

Schutz bei Überspannungen in Niederspannungsanlagen Neuerungen in der DIN VDE 0100-443 und DIN VDE 0100-534

Herausgeber/Impressum:

Zentralverband der Deutschen Elektro- und Informationstechnischen Handwerke (ZVEH) Lilienthalallee 4 60487 Frankfurt am Main

Stand: Juli 2017

Seit Oktober 2016 gelten DIN VDE 0100-443 (VDE 0100- 443): 2016-10 und DIN VDE 0100-534 (VDE 0100-534): 2016-10.

Diese Normen sind für die sofortige Anwendung bei neuen elektrischen Anlagen sowie bei Änderungen oder Erweiterungen vorhandener elektrischer Anlagen vorgesehen.

Für DIN VDE 0100-443 (VDE 0100-443): 2007-06 und DIN VDE 0100-534 (VDE 0100-534): 2009-02 besteht eine Übergangsfrist bis 14.12.2018.

Mögliche Unsicherheiten für Planer und Errichter einer elektrischen Anlage können vermieden werden, wenn die neuen Normen VDE 0100-443 und VDE 0100-534 sofort angewendet werden.

Anlagen, die nach dem 14.12.2018 in Betrieb gehen, sind ausschließlich nach den beiden neuen Normen zu planen und zu errichten.

DIN VDE 0100-443 (VDE 0100 Teil 443): 2016-10;

Errichten von Niederspannungsanlagen Teil 4-44: Schutzmaßnahmen - Schutz bei Störspannungen und elektromagnetischen Störgrößen - Abschnitt 443: Schutz bei Überspannungen infolge atmosphärischer Einflüsse oder von Schaltvorgängen

DIN VDE 0100-534 (VDE 0100 Teil 534): 2016-10;

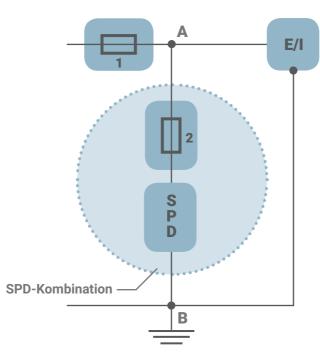
Errichten von Niederspannungsanlagen Auswahl und Errichtung elektrischer Betriebsmittel - Schaltgeräte und Steuergeräte - Überspannungs-Schutzeinrichtungen (SPDs) Die Installationsnormenreihe DIN VDE 0100 stellt die Anforderungen zur Planung und Installation von sicheren elektrischen Anlagen dar. DIN VDE 0100-443 (VDE 0100-443) regelt die Notwendigkeit von Schutzmaßnahmen gegen Überspannungen infolge atmosphärischer Einflüsse oder durch Schalthandlungen.

DIN VDE 0100-534 (VDE 0100-534) beschreibt die Auswahl und Errichtung von Überspannungs-Schutzeinrichtungen (SPD) zum Schutz bei transienten Überspannungen nach DIN VDE 0100-443 (VDE 0100-443), sowie DIN EN 62305 (VDE 0185-305) "Blitzschutz" oder wenn dieses durch andere Bestimmungen gefordert wird.

In diesem Beitrag werden die wichtigsten Änderungen gegenüber den Vorgängernormen vorgestellt. Diese Druckschrift bietet jedoch keine umfassende Gesamtdarstellung aller Anforderungen an den Überspannungsschutz in Niederspannungsanlagen. Für weiterführende Informationen wird auf die beiden Normen verwiesen.

Begriffe

Zur einheitlichen Sprachregelung und Namensgebung für Überspannungs-Schutzeinrichtungen (bislang: ÜSE) in den unterschiedlichen Normenwerken wurde der aus dem Englischen kommende Begriff "Surge Protective Device" – abgekürzt mit "SPD" – eingeführt. Die künftige vollständige Bezeichnung lautet Überspannungs-Schutzeinrichtung (SPD).


One-Port-SPD und Two-Port-SPD

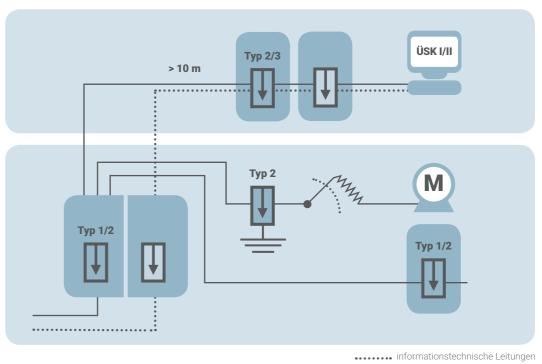
In der VDE 0100-534 wird nun auch zwischen den beiden SPD-Ausführungen One-Port-SPD und Two-Port-SPD unterschieden. One-Port-SPDs besitzen keine bestimmungsgemäße Reihenimpedanz, können aber getrennte Eingangs- und Ausgangsklemmen aufweisen. Two-Port-SPDs hingegen haben eine bestimmungsgemäße Reihenimpedanz.

SPD-Kombination

Weiterhin wurde der Begriff "SPD-Kombination" eingeführt. Er beschreibt eine oder mehrere SPDs einschließlich aller jeweils vom Hersteller der SPDs vorgeschriebenen Abtrennvorrichtungen, die zum Überspannungsschutz entsprechend der jeweiligen Netzform erforderlich sind – Bild 1. Die Abtrennvorrichtung, beispielsweise als Überstrom-Schutzeinrichtung, kann sowohl innerhalb der SPD als auch separat angeordnet sein.

> Bild 1: SPD-Kombination

- 1 Überstrom-Schutzeinrichtung der elektrischen Anlage
- Vom Hersteller geforderte Überstrom-Schutzeinrichtung diese kann intern oder extern zur Überspannungs-Schutzeinrichtung (SPD) angeordnet sein
- SPD Überspannungs-Schutzeinrichtung (SPD)
- A & B Anschlusspunkte der SPD-Kombination
- E/I Zu schützendes Betriebsmittel (= Equipment) oder zu schützende Anlage (= Installation)


Wichtigste Änderungen in VDE 0100-443

Anwendungsbereich

In VDE 0100-443 werden neben den induzierten Überspannungen aus Blitzeinwirkungen jetzt auch explizit Überspannungen aufgrund direkter Blitzeinschläge in die Niederspannungsversorgung berücksichtigt – Bild 2.

VDE 0100-443 enthält keine Anforderungen zum Schutz bei Überspannungen aus direkten Blitzeinschlägen in oder neben der baulichen Anlage. In diesen Fällen sind die Blitzschutznormen VDE 0185-305 zu berücksichtigen. Für bauliche Anlagen mit Explosionsrisiko und für bauliche Anlagen, bei denen im Schadensfall Auswirkungen auf die Umwelt auftreten können (zum Beispiel chemische oder radioaktive Emissionen), sind die einschlägigen Normen wie zum Beispiel VDE 0185-305 und VDE 0165 zu berücksichtigen.

> Bild 2: Erweiterter Anwendungsbereich von VDE 0100-443

energietechnische Leitungen

Überspannungsschutz auch in reinen Niederspannungs-Erdkabelnetzen erforderlich

Die bisherige VDE 0100-443 bisherige VDE 0100-443 (2007-06) beschreibt das Prinzip der systemeigenen Beherrschung von Überspannungen.

"Wenn eine Anlage von einem vollständig in der Erde verlegten Niederspannungsnetz versorgt wird und keine Freileitungen einschließt, reicht für den Schutz bei Überspannungen die Stehstoßspannungsfestigkeit der Betriebsmittel entsprechend Tabelle 1 aus und es ist kein besonderer Schutz bei Überspannungen atmosphärischen Ursprungs notwendig."

Das Prinzip der systemeigenen Beherrschung von Überspannungen, also die Tatsache, dass bei reinen Niederspannungskabelnetzen kein zusätzlicher Überspannungsschutz bei Überspannungen atmosphärischen Ursprungs notwendig ist, wurde sowohl bei IEC als auch für Europa im Cenelec-Dokument gestrichen. Es handelt sich hier also nicht um eine besondere deutsche nationale Zusatzanforderung. Vielmehr reagiert man mit diesem fundamentalen Paradigmenwechsel auf Weiterentwicklungen der modernen Elektroinstallation.

Dieses Prinzip wurde in der neuen Ausgabe ersatzlos gestrichen, weil:

- Auch in einem Niederspannungsnetz, welches ausschließlich aus Erdkabeln besteht, Blitzteilströme über diese Erdkabel übertragen werden und gefährliche Potentialdifferenzen am Gebäudeeintritt auftreten
- Übertragene Überspannungen durch das Erdkabel nicht nennenswert abgeschwächt oder gedämpft werden
- Viele Überspannungsschäden an elektrischen Geräten auftreten, die am Strom- und Telefonnetz betrieben werden, wie zum Beispiel Telefonanlagen
- Zunehmend empfindlichere Steuer- und Kommunikationseinrichtungen eingesetzt werden

VDE 0100-443 und VDE 0100-534 enthalten nicht die explizite Forderung nach Überspannungsschutz für weitere Systeme, zum Beispiel informationstechnische Systeme, weil solche Systeme nicht durch den Anwendungsbereich dieser Vorschriften abgedeckt sind. Beide Normen enthalten jedoch den Hinweis, falls Überspannungsschutz für die Niederspannungsversorgung erforderlich ist, dann wird auch für die anderen Systeme, wie zum Beispiel Telekommunikationsleitungen, eine zusätzliche Überspannungs-Schutzeinrichtung (SPD) empfohlen.

Notwendigkeit von Überspannungsschutz

Durch den Einbau von SPDs soll eine Spannungsbegrenzung entsprechend der Isolationskoordination sichergestellt werden. So werden gefährliche Funkenbildung und daraus resultierende Brände vermieden.

Überspannungs-Schutzeinrichtungen (SPDs) müssen zur Reduzierung der Auswirkungen von Überspannungen installiert werden. Dies gilt besonders für folgende elektrische Anlagen in:

- Anlagen für Sicherheitszwecke zum Schutz des menschlichen Lebens, z. B. medizinische genutzte Bereiche
- 2. Öffentliche Einrichtungen und Kulturbesitz, z. B. Ausfall von öffentlichen Diensten, Telekommunikationszentren, Museen

- 3. Gewerbe- oder Industriegebäuden, z. B. Hotels, Banken, Industriebetriebe, Gewerbemärkte, landwirtschaftliche Betriebe
- Großen Gebäuden mit großen Menschenansammlungen, wie zum Beispiel Büros, Schulen, Kirchen
- 5. Wohngebäuden und kleine Büros, wenn in diesen Gebäuden Betriebsmittel der Überspannungskategorie I oder II errichtet sind. Es ist davon auszugehen, dass in Gebäuden grundsätzlich Betriebsmittel der Überspannungskategorie I (empfindliche elektronische Geräte, z. B. Computer, TV-Geräte, Videoüberwachung) oder II (Haushaltsgeräte, Werkzeuge z. B. Waschmaschinen, Geschirrspüler, Kaffeeautomaten) an die feste Installation angeschlossen und betrieben werden.

Zusätzlicher Überspannungsschutz bei Schaltüberspannungen

Zusätzliche SPDs sind erforderlich, wenn zu erwarten ist, dass Geräte innerhalb der elektrischen Anlage Schaltüberspannungen oder Störungen erzeugen, die die zugeordnete Überspannungskategorie der elektrischen Anlage übersteigen.

Dies kann zum Beispiel der Fall sein bei

- Generatoreinspeisungen in der Niederspannungsanlage
- Schalten großer induktiver Lasten (Motoren, Transformatoren)
- Schalten großer kapazitiver Lasten (Kondensatorbänke, Speichereinheiten)
- Schalten hoher Lastströme

Zum Schutz bei Schaltüberspannungen sollten SPDs so nah wie möglich an den Störquellen errichtet werden.

DIN VDE 0100-443 und DIN VDE 0100-712 – Was ist bei Photovoltaik-Anlagen zu beachten?

Wird eine neue PV-Anlage nachträglich an eine bestehende elektrische Anlage angeschlossen, erfolgt dies über einen neuen Stromkreis, welcher nach den aktuell gültigen Normen zu errichten ist. Damit ergibt sich die Notwendigkeit des Überspannungsschutzes (mind. Typ 2) auf der AC-Seite nach DIN VDE 0100-443: 2016-10. Durch den Verweis in der ebenfalls im Oktober 2016 neu veröffentlichten VDE 0100-712, Abschnitte 712.443 und 712.534

auf DIN VDE 0185-305-3 Beiblatt 5 wird dann – insbesondere zum Schutz des Wechselrichters – zusätzlich der Einbau von Überspannungsschutz auf der DC-Seite erforderlich. Zusätzlich wird auch bei PV-Anlagen – wie bereits in der VDE 0100-443: 2016-10 – Überspannungsschutz für die Informations- und Kommunikationstechnik empfohlen.

Wichtigste Anderungen In VDE 0100-534 We with the state of the state

SPD Typen und Einbauorte

Nach VDE 0100-534 sollen SPDs so nah wie möglich am Speisepunkt der elektrischen Anlage errichtet werden, sodass die nachgeordneten Installationseinrichtungen geschützt werden. Der Speisepunkt der elektrischen Anlage befindet sich beispielsweise in aus dem öffentlichen Energieversorgungsnetz gespeisten Anlagen in der Nähe der Gebäudehauptverteilung, zum Beispiel der zentralen Zähleranlage. In Industrieanlagen mit Mittelspannungseinspeisung sind die SPDs in der Niederspannungshauptverteilung zu installieren.

Zum Schutz bei indirekten Blitzeinwirkungen und bei Schaltüberspannungen, die über die Versorgungsleitung in die Anlage eingebracht werden, müssen mindestens SPDs Typ 2 am oder in der Nähe des Einspeisepunktes, jedoch nicht im ungezählten Bereich, installiert werden.

Sind bauliche Anlagen mit externen Blitzschutzsystemen ausgerüstet oder ist der Schutz bei Einwirkungen infolge direkter Blitzeinschläge anderweitig gefordert, dann müssen SPDs Typ 1 zum Blitzschutzpotentialausgleich installiert werden.

Typ 1 SPDs bei Freileitungseinspeisung

Bei Gebäuden mit Freileitungseinspeisung müssen immer SPDs Typ 1 eingesetzt werden, weil in Deutschland auch der direkte Blitzeinschlag in den letzten Mast der Freileitung nahe dem Gebäude immer berücksichtigt wird. Dies gilt auch, wenn die Versorgungsleitung zwischen dem letzten Mast der Freileitung und der baulichen Anlage als Erdkabel ausgeführt wird – Bild 4.

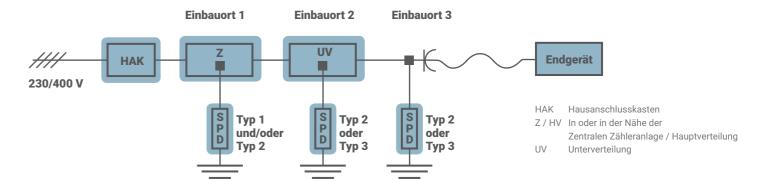
SPDs nach Produktstandard

Der Schutz gegen Auswirkungen bei transienten Überspannungen wird durch die Installation von Überspannungs-Schutzeinrichtungen (SPDs) realisiert. Diese müssen nach der Produktnorm DIN EN 61643-11 (VDE 0675-6-11): 2013-04 geprüft sein. VDE 0675-6-11 beschreibt die unterschiedlichen SPD Typen nach Tabelle 1.

> Tabelle 1: SPD-Typen und die dazugehörigen Prüfklassen

SPD Typen	Prüfklasse	Referenzparameter
Typ 1	Klasse I	I _{imp} (10/350 μs)
Typ 2	Klasse II	l _{n (8/20 μs)}
Тур 3	Klasse III	U _{oc (1,2/50 μs)}

¹imp Blitzstoßstrom für Prüfung der Klasse I

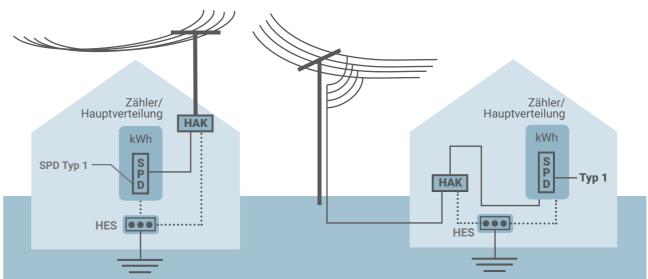

^In Nennableitstoßstrom für Prüfung der Klasse II

 $U_{
m OC}$ Prüfspannung des Hybrid-Generators für die Prüfung der Klasse III

Zusätzlicher Überspannungsschutz

Weitere SPDs Typ 2 oder Typ 3 können für einen ausreichenden Schutz der elektrischen Anlage notwendig sein. Diese zusätzlichen SPDs müssen in Energieflussrichtung gesehen nach dem Speisepunkt der elektrischen Anlage in der ortsfesten elektrischen Anlage, zum Beispiel in Unterverteilungen oder an den Steckdosen, errichtet werden – Bild 3. Diese zusätzlichen SPDs dürfen nicht ohne SPDs, die am Speisepunkt der elektrischen Anlage errichtet sind, verwendet werden und müssen mit vorgeschalteten SPDs koordiniert sein.

> Bild 3: Einbauorte von SPDs


Zusätzliche SPDs können notwendig sein, wenn Gefährdungen von weiteren Störquellen ausgehen, zum Beispiel:

- Schaltüberspannungen, die innerhalb der elektrischen Anlage erzeugt werden
- Überspannungen aus Systemen, die in die betreffende bauliche Anlage eingeführt werden, wie zum Beispiel Telekommunikationsleitungen oder leitungsgebundene Internetverbindungen
- Überspannungen aus anderen Systemen, die weitere bauliche

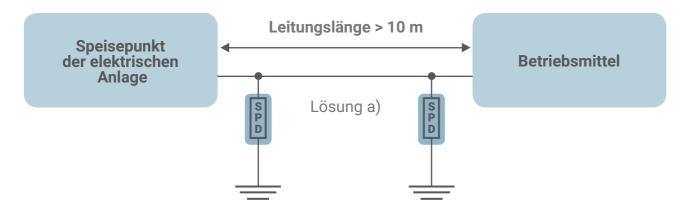
Anlagen versorgen, wie zum Beispiel Nebengebäude, Außenanlagen, Außenleuchten oder Stromversorgungen für Außensensoren

In diesen Fällen sollten SPDs so nah wie möglich an den Störquellen dieser Gefährdungen, bei gebäudeüberschreitenden Kabeln am Gebäudeeintritt, errichtet werden.

> Bild 4: Einbauort von SPDs

HES = Haupterdungsschiene

Schutzbereich


In einem neuen Abschnitt werden Vorgaben zum wirksamen Schutzbereich von Überspannungs-Schutzeinrichtungen (SPDs), also dem Abstand zwischen SPD und dem zu schützendem Betriebsmittel gegeben – Bild 5.

Um einen praktikabel umsetzbaren Geräte- bzw. Anlagenschutz zu gewährleisten, ist die Betrachtung des Schutzbereichs um die in der Anlage angeordneten Überspannungs-Schutzeinrichtungen von entscheidender Bedeutung. Der Schutzbereich eines SPDs beträgt 10 Meter. Wird dieser überschritten, dann sollte eine der folgenden Schutzmaßnahmen umgesetzt werden.

- a) Zusätzliches SPD so nah wie möglich am zu schützenden Betriebsmittel unter Beachtung der notwendigen Bemessungs-Stoßspannung des Betriebsmittels, oder
- b) One-Port-SPD am oder in der Nähe des Speisepunkts der elekrischen Anlage, dessen Schutzpegel 50 % der notwendigen Bemessungs-Stoßspannung Uw des zu schützenden Betriebs mittels nicht überschreiten darf, oder
- c) Two-Port-SPD am oder in der Nähe des Speisepunkts der elektrischen Anlage, dessen Schutzpegel in keinem Fall die notwendige Bemessungs-Stoßspannung Uw des zu schützenden Betriebsmittels überschreiten darf.

Die Installationsvarianten (b) und (c) sollten nur zusammen mit weiteren Maßnahmen wie der Verwendung von beidseitig geerdeten geschirmten Leitungen in allen zu schützenden Stromkreis(en) angewendet werden.

> Bild 5: Schutzbereich eines SPDs

SPD-Anschlussschemata zum Fehlerschutz

Zum Schutz gegen elektrischen Schlag (Fehlerschutz) sind für die unterschiedlichen Netzformen die Anschlussschemata entsprechend Tabelle 2 anzuwenden.

> Tabelle 2: SPD-Anschlussschemata in Abhängigkeit der Netzform

Netzform am Installationsort der SPD-Kombination	Anschlussschema 1	Anschlussschema 2
TN-System	X	Χ
TT-System	in Deutschland nicht erlaubt	Χ
IT-System mit mitgeführtem Neutralleiter	Х	Х
IT-System ohne mitgeführtem Neutralleiter	X	N/A

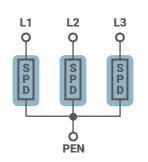
X = anwendbar N/A = nicht anwendbar

Anschlussschema 1

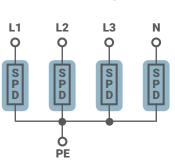
(z. B. 3+1-Schaltung)

(z. B. 3+0-Schaltung oder 4+0-Schaltung)

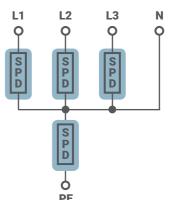
Eine SPD-Kombination, die einen Schutzpfad zwischen jedem aktiven Leiter (Außenleiter und Neutralleiter, falls vorhanden) und Schutzleiter oder zwischen jedem Außenleiter und PEN-Leiter aufweist


Anschlussschema 2: Kombination von Überspannungs-Schutzein-

richtungen (SPDs), die einen Schutzpfad zwischen jedem Außen-


leiter und dem Neutralleiter und einen Schutzpfad zwischen dem

Neutralleiter und dem Schutzleiter aufweist


> Bild 6a: 3+0-Schaltung

> Bild 6b: 4+0-Schaltung

> Bild 6c: 3+1-Schaltung Anschlussschema 2

Schutzpegel

Der SPD-Schutzpegel U_p zwischen aktiven Leitern und Schutzleitern darf in keinem Fall die Bemessungs-Stoßspannung U_w der zu schützenden Betriebsmittel überschreiten.

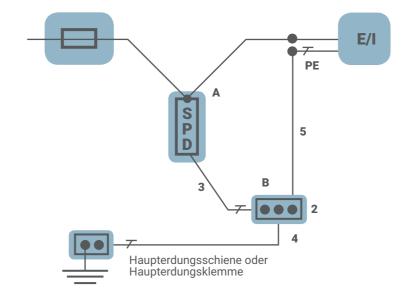
Wird für SPDs in Anschlussschema 2 (z. B. 3+1-Schaltung) kein gemeinsamer Schutzpegel für den Schutzpfad Außenleiter-Schutzleiter genannt, dann muss dieser durch die Addition der einzelnen Schutzpegel für die in Reihe geschalteten Schutzpfade ermittelt werden.

Der SPD-Schutzpegel U_p muss entsprechend der für Überspannungskategorie II notwendigen Bemessungs-Stoßspannung U_w nach Tabelle 3 ausgewählt werden.

Es wird empfohlen, dass U_p 80 % von U_w nicht überschreitet. Beispielsweise beträgt die Bemessungs-Stoßspannung U_w entsprechend Überspannungskategorie II für 230/400 V TN-oder TT-Systeme 2,5 kV und somit der empfohlene Schutzpegel U_p maximal 2,0 kV.

Tabelle 3: Geforderte Bemessungs-Stoßspannung von Betriebsmitteln (Uw) nach DIN VDE 0100-443, Tab. 443.2

Nennspannung der elektrischen Anlage ^b [V]	Spannung Außenleiter zu Neutralleiter abgeleitet von den Nennwechsel oder Nenngleichspannungen bis einschließlich [V]	Geforderte Bemessungs-Stoßspannung der Betriebsmittel ^b [kV]				
		Überspannungs- kategorie IV (Betriebsmittel mit sehr hoher Bemessungs- Stoßspannung)	Überspannungs- kategorie III (Betriebsmittel mit hoher Bemessungs- Stoßspannung)	Überspannungs- kategorie II (Betriebsmittel mit normaler Bemessungs- Stoßspannung)	Überspannungs- kategorie I (Betriebsmittel mit geringer Bemessungs- Stoßspannung)	
		Zum Beispiel Elektrizitäts- zähler, Rundsteuer- empfänger	Zum Beispiel Verteilertafeln, Schalter, Steckdosen	Zum Beispiel Haushaltsgerä- te, Werkzeuge	Zum Beispiel empfindliche elektronische Geräte	
120 / 208 120 / 240	150	4	2,5	1,5	0,8	
230 / 400 ° 277 / 480 ^b	300	6	4	2,5	1,5	
400 / 690	600	8	6	4	2,5	
1.000	1000	12	8	6	4	
1.500 Nur DC.	1.500 Nur DC.	15 ^d	10 ^d	8 ^d	6 ^d	


a Nach der Norm DIN EN 60035 (VDE 0175-1)

Die Empfehlung, dass U_p 80 % von U_w nicht überschreitet, muss nicht beachtet werden, wenn mindestens eine der folgenden Bedinqungen zutrifft:

- Das zu schützende Betriebsmittel wird direkt an den SPD-Anschlussklemmen angeschlossen
- SPD-Anschluss nach Bild 7 ("V-Verdrahtung")
- Der Spannungsfall an der im SPD-Anschlusspfad errichteten Überstrom-Schutzeinrichtung ist bereits bei der Bestimmung des Schutzpegels berücksichtigt
- Es wird Überspannungsschutz entsprechend Überspannungskategorie II sichergestellt, aber am entsprechenden Einbauort sind nur Betriebsmittel der Überspannungskategorie III oder IV installiert

> Bild 7: SPD-Anschluss in "V-Verdrahtung"

- SPD Überspannungs-Schutzeinrichtung (SPD)
- PE Schutzleiter
- E/I Betriebsmittel (= Equipment) oder Anlage (=Installation)
- 1 Haupterdungsschiene oder Haupterdungsklemme
- 2 Zusätzliche Schutzleiterschiene
- 3 Leitungslänge zu berücksichtigen
- Leitungslängen müssen nicht berücksichtigt werden
- Leitungslängen müssen nicht berücksichtigt werden
- A, B Anschlusspunkte der SPD-Kombination

b Diese Bemessungs-Steh-Stroßspannung gilt zwischen den aktiven Leitern und PE.

c. In IT-Systemen, die bei 220-240 V betrieben werden, muss, aufgrund der Spannung gegen Erde, die an einem Leiter bei einem Erdfehler ansteht, die Zeile für 230/400 V angewendet werden. ANMERKUNG in 3-phasigen IT-Systemen ist aufgrund der Spannung gegen Erde, die an einem Leiter bei einem Erdfehler ansteht, die Spannung zwischen den Außenleitern zugrunde zu legen.

d. Empfohlene Werte nach Annex D von DIN EN 60664-2-1: (VDE 0110-1 Beiblatt 1): 2011

Nennableitstoßstrom Invon SPDs Typ 2

Sollte in der Nähe des Speisepunktes kein SPD Typ 1, sondern ein SPD Typ 2 eingesetzt werden, dann muss der Nennableitstoßstrom I_n mindestens den Werten von Tabelle 4 entsprechen.

Zusätzliche SPDs Typ 2 müssen mindestens einen Nennableitstoßstrom nach Tabelle 5 haben. Dies gilt für alle nach VDE 0100-443 geforderten Typ 2 SPDs.

> Tabelle 4: Mindestwerte von In für SPD Typ 2 an Einbauort 1 nach Bild 3

	I _n [kA]				
Amachine	Netzsystem				
Anschluss -	Einphasen-System		Dreiphasen-System		
_	Anschlussschema	Anschlussschema	Anschlussschema	Anschlussschema	
	1	2	1	2	
L - N		10		10	
L – PE	10		10		
N – PE	10	20	10	40	

> Tabelle 5: Mindestwerte von In für SPD Typ 2 an Einbauorten 2 oder 3 nach Bild 3

	I _n [kA]					
Anschluss		Netzsystem				
	Einphasen-System		Dreiphasen-System			
	Anschlussschema	Anschlussschema	Anschlussschema	Anschlussschema		
	1	2	1	2		
L - N		5		5		
L – PE	5		5			
N – PE	5	10	5	20		

Blitzprüfstrom I_{imp} von SPDs Typ 1

Gebäude mit Blitzschutzsystem

Bei Gebäuden mit einem Blitzschutzsystem muss dann der notwendige Blitzprüfstrom I_{imp} der SPDs Typ 1 wie folgt ausgewählt werden:

- a) Ist keine Risikoanalyse nach VDE 0185-305-2 durchgeführt worden, dann muss der Blitzstoßstrom (I_{imp}) mindestens den Werten von Tabelle 6 entsprechen.
- b) Ist eine Risikoanalyse nach VDE 0185-305-2 durchgeführt worden, dann muss der Blitzstoßstrom I_{imp} entsprechend der Blitzschutznormen VDE 0185-305 bestimmt werden.

> Tabelle 6: Mindestwerte von $l_{\rm imp}$ für SPD Typ 1 bei Gebäude mit Blitzschutzsystem

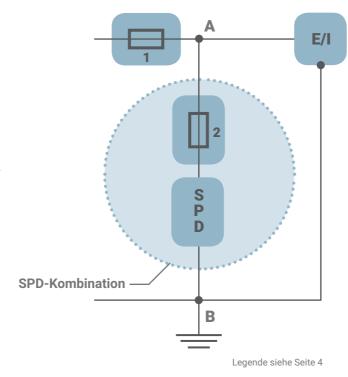
	I _{imp} [kA]				
Anschluss	Netzsystem				
	Einphasen-System		Dreiphasen-System		
	Anschlussschema 1	Anschlussschema 2	Anschlussschema 1	Anschlussschema 2	
L - N		12,5		12,5	
L – PE	12,5		12,5		
N – PE	12,5	25	12,5	50	

Gebäude ohne Blitzschutzsystem, aber mit Freileitungseinspeisung

Wie bereits ausgeführt, müssen bei Gebäuden mit Freileitungseinspeisung SPDs Typ 1 eingesetzt werden. Diese müssen mindestens für Blitzstoßströme l_{imp} nach Tabelle 7 ausgelegt sein.

Die Mindestwerte des Blitzstoßstromes nach Tabellen 6 und 7 werden der Blitzschutzklasse LPL III und IV in Anlehnung an die Vorgaben der Blitzschutznormenreihe VDE 0185-305 zugeordnet.

> Tabelle 7: Mindestwerte von I_{imp} für SPD Typ 1 bei Gebäude mit Freileitungseinspeisung


	I _{imp} [kA]				
Anschluss	Netzsystem				
	Einphasen-System		Dreiphasen-System		
	Anschlussschema 1	Anschlussschema 2	Anschlussschema 1	Anschlussschema 2	
L – N		5		5	
L – PE	5		5		
N – PE	5	10	5	20	

Kurzschlussfestigkeit und Folgestromlöschvermögen entsprechend Kurzschlussstrom am Einbauort der SPD-Kombination

Überarbeitet wurden die Anforderungen an die notwendige Kurzschlussfestigkeit I_{SCCR} und das Folgestromlöschvermögen I_{fi} von SPDs. Diese Werte müssen mindestens dem prospektiven Kurzschlussstrom am Installationsort der SPD-Kombination (Anschlusspunkte A und B nach Bild 8) entsprechen.

> Bild 8: SPD-Kombination

Schutz von Überspannungs-Schutzeinrichtungen (SPDs) bei Überstrom

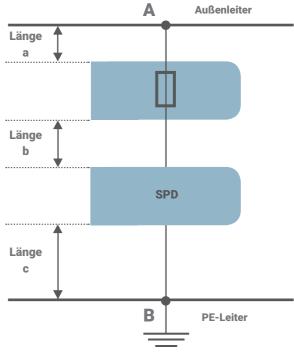
Alle SPDs müssen bei Überstrom immer gegen Kurzschlussströme geschützt werden. Ein Schutz gegen Überlastströme ist bei Stichverdrahtung nach Bild 8 nicht notwendig. Der Kurzschlussschutz kann entweder intern und/oder extern zum SPD angeordnet werden. Für Two-Port-SPDs und für SPDs mit separaten Ein- und Ausgangsklemmen sind zusätzlich die Überstrom-Bedingungen zu erfüllen.

Die Überstrom-Schutzeinrichtungen zum Schutz von SPD-Kombinationen müssen wie folgt ausgewählt werden: – Nach DIN VDE 0100-430 – Abschnitt 434 So hoch wie möglich, um eine möglichst hohe Stoßstromfestigkeit der gesamten SPD-Kombination zu erreichen. Es dürfen jedoch die Bemessungswerte und die Eigenschaften, die der Hersteller für den maximalen Überstromschutz in den Einbauanleitungen vorgibt, nicht überschritten werden.

Neu aufgenommen wurden in die VDE 0100-534 ein Hinweis zur Selektivität von Überstrom-Schutzeinrichtungen. Es wird nun gefordert, dass, soweit notwendig, entsprechend den Installationsbedingungen am Errichtungsort der SPDs und entsprechend den Herstellerangaben die erforderliche Selektivität verschiedener Überstrom-Schutzeinrichtungen betrachtet werden muss.

Anschluss von SPDs

(1) Anschlusslänge


Es sind neue Anforderungen zum Anschluss von Überspannungs-Schutzeinrichtungen an die Niederspannungsanlage enthalten. So darf die maximale Gesamtlänge der Anschlussleitungen (a+b+c nach Bild 9) 0,5 Meter nicht überschreiten.

Falls diese Gesamtlänge überschritten wird, werden verschiedene Maßnahmen beschrieben, die als Alternativvarianten zu der Längenbegrenzung der Anschlussleitungen von Überspannungs-Schutzeinrichtungen in der praktischen Umsetzung angewendet

werden müssen, um insgesamt die Aufrechterhaltung des in den Anlagen maximal zulässigen Schutzpegel U_p sicherstellen zu können.

- $\, \cdot \,$ Einsatz eines SPDs mit niedrigerem U_p Erweiterung: Hinweis: 1 m Zuleitung verursachen eine Zusatzspannung von ca. 1000 V
- Zweites, koordiniertes SPD in der N\u00e4he des zu sch\u00fctzenden Betriebsmittels, um so den Schutzpegel Up an die Bemessungs-Sto\u00dfspannung des zu sch\u00fctzenden Betriebsmittels anzupassen
- SPD-Anschluss in "V-Verdrahtung" Bild 7

> Bild 9: Länge der Anschlussleitungen

Anschluss von SPDs

(2) Anschlussquerschnitt

Der notwendige Querschnitt der Anschlussleitungen von Überspannungs-Schutzeinrichtungen wurde festgelegt. Um den in der Praxis häufig vorkommenden Fragestellungen zu diesem Sachverhalt gerecht zu werden, wurden für die Typ 1 und Typ 2 SPDs am oder in der Nähe des Speisepunktes der Anlage folgende Anforderungen definiert:

Anschlussleitungen zwischen SPD und der Haupterdungsschiene/Haupterdungsklemme oder dem Schutzleiter:

- SPD Typ 2: Mindestens 6 mm² Kupfer oder einen dazu leitwertgleichen anderen Leiterquerschnitt
- SPD Typ 1: Mindestens16 mm² Kupfer oder einen dazu leitwertgleichen anderen Leiterguerschnitt

Anschlussleitungen zwischen SPD und den Außenleitern

Die Anschlussleitungen zwischen SPD und den Außenleitern müssen so ausgelegt werden, dass sie der zu erwartenden Kurzschlussstrombelastung entsprechend VDE 0100-430 Abschnitt 433.3.1 b) standhalten. Aus Gründen der Impulsstromtragfähigkeit dürfen diese Anschlussleitungen folgenden Querschnitt nicht unterschreiten:

- SPD Typ 2: Mindestens 2,5 mm² Kupfer oder einen dazu leitwertgleichen anderen Leiterguerschnitt
- SPD Typ 1: Mindestens 6 mm² Kupfer oder einen dazu leitwertgleichen anderen Leiterquerschnitt

FAQ-Liste der häufigsten Fragen zur Klarstellung:

Wo ist bei Freileitungseinspeisung (Dachständer) das Typ 1 SPD zu installieren?

Nach DIN VDE 0100-534:2016-10 müssen in Deutschland bei baulichen Anlagen mit Freileitungseinspeisung SPDs Typ 1 eingesetzt werden

Dieser SPD Typ 1 muss bei Dachständeranschluss mindestens am Zählerschrank errichtet werden, damit der Potentialausgleich zwischen den aktiven Leitern und der Erdungsanlage sichergestellt werden kann.

Empfehlenswert ist der Einbau einer zusätzlichen SPD Typ 1 am Dachständeranschluss (so nah als möglich am Speisepunkt der Anlage), damit die Blitzstromaufteilung auf mehrere Leiter erfolgt.

Ist in einer bestehenden elektrischen Anlage Überspannungsschutz nachzurüsten, wenn die elektrische Anlage erweitert / erneuert wird?

DIN VDE 0100-443:2016-10 und DIN VDE 0100-534:2016-10 enthalten **keine Nachrüstforderungen**.

Grundsätzlich gilt, wird eine bestehende elektrische Anlage erneuert/erweitert oder ein Teil einer bestehenden Anlage erneuert/ erweitert, dann ist der erneuerte/erweiterte elektrische Anlagenteil nach dem zum Erneuerungszeitpunkt gültigen Normenstand zu errichten. Es sind dann die nach DIN VDE 0100-443:2016-10 und DIN VDE 0100-534:2016-10 notwendigen Überspannungs-Schutzeinrichtungen zu errichten. Der Anlagenrichter sollte jedoch grundsätzlich den Auftraggeber darauf hinweisen (Informationspflicht), dass auch in dem nicht erneuerten/erweiterten Anlagenteilen Überspannungs-Schutzeinrichtungen notwendig werden könnten.

Es können beispielhaft folgende drei Fälle unterschieden werden:

Fall 1:

Neuer Zählerplatz (Hauptverteilung), jedoch keine Erneuerung/ Erweiterung der Elektroanlagen in den Wohnungen: Es ist Überspannungsschutz am Zählerplatz/Hauptverteilung zu installieren – Informationspflicht siehe oben.

Fall 2:

Der Zählerplatz (Hauptverteilung) bleibt unverändert, jedoch Erneuerung/Erweiterung der Elektroanlage in der Wohnung: Es ist in dieser Wohnung im Wohnungsverteiler Überspannungsschutz zu installieren – Informationspflicht siehe oben.

Fall 3:

Es wird ein Endstromkreis ergänzt; Der Speisepunkt der Anlage (z. B. Zählerplatz/Hauptverteilung ODER Wohnungsverteilung) bleibt jedoch unverändert:

In diesem Fall **muss nicht zwingend** Überspannungsschutz am Speisepunkt der Anlage installiert werden. Es besteht jedoch die Informationspflicht (siehe oben) und die Empfehlung von SPD für den ergänzten Anlagenteil entsprechend der Schutzbedürftigkeit.

Es besteht **keine** normative Einbauverpflichtung. Die Installation von zusätzlichen Überspannungs-Schutzeinrichtungen (Typ 2 oder Typ 3) bedarf einer Einzelfallbetrachtung (siehe Abschnitt "Zusätzlicher Überspannungsschutz", Seite 9).

Hinweis: Die Bemessungs-Stehstoßspannungsfestigkeit von fest angeschlossenen Verbrauchsmitteln entspricht mindestens der Überspannungskategorie II (2,5kV). Die Vorgaben der Isolationskoordination sind somit durch den Einbau von Überspannungs-Schutzeinrichtungen (SPDs) am Speisepunkt der Anlage eingehalten.

In einem älteren Einfamilienhaus ist kein Fundamenterder (nach DIN 18014), kein äußerer Blitzschutz (nach DIN VDE 0185-305), kein Tiefenerder und keine andere Erdungsanlage vorhanden. Eine Haupterdungsschiene (HES) ist montiert und der Schutzpotentialausgleich ist erstellt. Wie kann die Elektrofachkraft in diesem Fall den SPD Typ 1 und SPD Typ 2 nach der DIN VDE 0100-443 / 534 installieren?

Eine elektrische Anlage ohne Fundamenterder (Anlagenerder) ist nur bei Gebäuden mit einem Niederspannungssystem, das als TN-C oder TN-C-S-System ausgeführt ist und bei Gebäuden ohne äußere Blitzschutzanlage zulässig.

Wenn in Anlagen ohne Anlagenerder Überspannungsschutz nach DIN VDE 0100-443 errichtet (nicht Blitzschutz) wird, dient der nach DIN VDE 0100-443 geforderte Überspannungsschutz ausschließ-

lich zum Schutz bei Überspannungen, die über das Stromversorgungsnetz in die betreffende Anlage übertragen werden. Der Überspannungsschutz kann ohne zusätzlichen Anlagenerder installiert werden. Dieser Überspannungsschutz stellt den notwendigen Potentialausgleich zur Einhaltung der Isolationskoordination in der Kundenanlage sicher.

Unsere Partner

SIEMENS

Bildnachweise:

Titelbild: Fotolia | Urheber: kraichgaufoto

Seite 2: Shutterstock | Urheber: Mihai Simonia

Seite 3: Shutterstock | Urheber: kaycco

Shutterstock | Urheber: Monkey Business Images

Seite 4: Shutterstock | Urheber: Frank L. Junior

Seite 5: Hager Vertriebsgesellschaft mbH & Co. KG

Seite 6: Fotolia | Urheber: fefufoto, Shutterstock | Urheber: DiziO Seite 7: Shutterstock | Urheber: Artens

Seite 8: DEHN + SÖHNE GmbH + Co. KG.

Seite 10: OBO BETTERMANN GmbH & Co. KG

Shutterstock | Urheber: Pressmaster

Seite 11: ArGe Medien

Seite 13: PHOENIX CONTACT Deutschland GmbH Shutterstock | Urheber: Eduard Kyslynskyy

Seite 14: Siemens AG

Seite 15: OBO BETTERMANN GmbH & Co. KG

Seite 16: Shutterstock | Urheber: Monkey Business Images

Seite 17: Shutterstock | Urheber: sheff, John Panella

Seite 18: ArGe Medien

Seite 20: Fotolia | Urheber: adriannni

Seite 21: Heinz Zak / ArGe Medien im ZVEH

Seite 22: ArGe Medien

Seite 23: Fotolia | Urheber: kaycco

Seite 24: Fotolia | Urheber: kaycco

